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Abstract
We report on the effective electromagnetic parameters of metamaterials consisting of
resonant building units, through systematic full-electrodynamic calculations by the
layer-multiple-scattering method on a model system: a photonic crystal of metallic nanoshells.
The results obtained by the S-matrix retrieval procedure for single- and multi-layer slabs of
ordered arrays of such nanoshells are analysed in conjunction with the complex band structure
of the corresponding infinite crystal and the Maxwell–Garnett effective-medium approximation.
We discuss conditions that must be fulfilled in order for an effective-medium description of a
metamaterial to be valid and explain artefacts which often occur in numerical calculations of the
effective parameters. In particular, we propose a method to resolve ambiguities in the
determination of the effective refractive index, which become prominent for thick slabs, based
on the complex band structure of the infinite crystal.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The description of the electromagnetic (EM) response of
a heterogeneous system through effective permittivity (εeff)
and permeability (μeff) functions, i.e. the proper definition
of an equivalent average homogeneous medium, has recently
emerged as an important issue in relation to optical
metamaterials [1–8]. The EM properties of a linear,
passive system can be entirely specified by permittivity and
permeability tensors that depend, in general, on the angular
frequency ω and the wavevector q. A heterogeneous system
may consist, for example, of a periodic or random distribution
of inclusions (scatterers) in an otherwise homogeneous host
material; however, a periodic arrangement or patterning of
scattering elements is more convenient from the point of view
of design and analysis. If the wavelength of the EM field is
much larger than the size of the scatterers and the distance
between them, in order for a local description to be applicable,
and if characterization of the system is restricted to one of
its principal axes assuming a linearly polarized probing wave,
only two scalar components, εeff(ω) and μeff(ω), are relevant.

The most popular procedure for the assignment of
effective material parameters to a heterogeneous medium
consists of comparing the scattered waves in the far-field zone,

i.e. the complex transmission and reflection coefficients (S-
matrix elements) from a planar slab of the heterogeneous
medium to those scattered from a slab of a hypothetical
homogeneous material [1, 2, 7]. However, this technique
often leads to nonphysical material parameters as a result
of forcing a homogeneous material to reproduce exactly the
features of the wave field scattered by the actual heterogeneous
medium [9–12]. Such situations are typical, for example, for
periodic photonic structures of resonant scatterers [9].

The present work reports on the effective material
parameters of single- and multi-layer architectures of
ordered arrays of metallic nanoshells, which exhibit tunable
resonances. The results obtained by the S-matrix retrieval
method are compared to those of the extended Maxwell–
Garnett theory [13] and analysed in conjunction with relevant
complex band-structure diagrams of the corresponding infinite
crystal.

2. Method of calculation

Full-electrodynamic calculations for periodic structures of
spherical particles of radius R consisting of a silica core
(εsilica = 2.13, μsilica = 1) of radius R1 coated with a metallic
shell of thickness D (R = R1 + D) are carried out using the
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on-shell layer-multiple-scattering method. This method was
extensively presented elsewhere [14–17] and its suitability for
photonic systems with absorptive and/or strongly dispersive
constituents, such as metallic materials, was convincingly
demonstrated [18–20]. Here we restrict ourselves to a brief
description of the main points of the method.

The properties of the individual particles enter only
through the corresponding scattering T matrix which, in
the case under consideration, is evaluated using an efficient
recursive formula for multiply coated spheres [21]. We assume
that the metallic material is described by the simple Drude
relative dielectric function [22]

εm = 1 − ω2
p

ω
(
ω + iτ−1

) , (1)

where ωp is the bulk plasma frequency, τ the relaxation time
of the conduction band electrons that accounts for dissipative
losses and μm = 1. For convenience, we shall express the
angular frequency in units of ωp and use c/ωp as the length
unit, where c is the velocity of light in vacuum. We note that,
considering a typical value of 10 eV for h̄ωp, c/ωp corresponds
to about 20 nm.

Let us assume, to begin with, a two-dimensional (2D)
periodic array of nanoshells on the xy plane and a plane EM
wave incident on this layer. Because of the 2D periodicity of
the structure, we write the component of the wavevector of
the incident wave parallel to the layer, q‖, as q‖ = k‖ + g′,
where k‖, the reduced wavevector in the surface Brillouin zone
(SBZ), is a conserved quantity in the scattering process and g′
is a certain reciprocal vector of the given lattice. Therefore,
the wavevector of the incident wave has the form K±

g′ =
k‖+g′±[q2−(k‖+g′)2]1/2 êz , where êz is the unit vector along
the z axis and the + or − sign refers to incidence from the left
(z < 0) or from the right (z > 0), i.e. a wave propagating
towards the z > 0 or the z < 0 half-space, respectively.
Since ω and k‖ are conserved quantities, the scattered field will
consist of a series of plane waves with wavevectors

K±
g = k‖ + g ±

[
q2 − (

k‖ + g
)2

]1/2
êz, ∀ g (2)

and polarizations along ê1 and ê2 (polar and azimuthal unit
vectors, respectively, associated with every Ks

g, s = ±1).
Though the scattered field consists, in general, of a number
of diffracted beams corresponding to different 2D reciprocal
lattice vectors g, only beams for which Ks

gz is real constitute
propagating waves. When (k‖ + g)2 > q2 the corresponding
unit vectors êp become complex but they are still orthonormal
(êp · êp′ = δpp′ , p, p′ = 1, 2).

The scattering S matrix transforms the incident into
the outgoing wave field (with all plane-wave components
expanded about a common origin of coordinates). Explicit
expressions for the matrix elements Sss ′

g p;g′ p′ are summarized
elsewhere [15, 16]. The S matrix of multi-layers with the same
2D periodicity is obtained by combining the corresponding
transmission and reflection matrices of the component layers,
with appropriate phase factors, in order to describe multiple
scattering between the layers. The ratio of the transmitted or

Figure 1. Left-hand diagram: the complex photonic band structure
of a simple cubic crystal with lattice constant a = 3c/ωp of
non-absorbing nanospheres consisting of a silica core of radius
R1 = 0.7c/ωp and a metallic shell of thickness D = 0.3c/ωp, in air,
along the [001] direction. The thick and thin lines denote doubly
degenerate and non-degenerate bands, respectively. Over the gap
region we display the doubly degenerate complex bands with the
smallest in magnitude imaginary part (shown in the grey shaded
areas). The dotted lines show the results of the Maxwell–Garnett
effective-medium approximation. Right-hand diagram: transmittance
at normal incidence of a slab of 8 (001) planes of the above crystal.

the reflected energy flux associated with the incident wave, on
the right and the left of the slab, defines the transmittance,
T (ω, k‖ +g′, p′), or reflectance, R(ω, k‖ +g′, p′), of the slab,
respectively. On the other hand, for a three-dimensional (3D)
crystal consisting of an infinite periodic sequence of layers
along the z direction, applying the Bloch condition for the wave
field in the region between two consecutive unit slabs leads to
an eigenvalue equation, which gives the z component of the
Bloch wavevector, kz , for given ω and k‖ [15, 16].

3. Complex band structure of a simple cubic crystal
of metallic nanoshells

The spectra of plasmon modes in metallic nanoshells are much
richer than those in solid metallic nanoparticles, since particle
plasmons (at the outer surface of the shell) and cavity plasmons
(at the inner surface of the shell), both of electric multipole
type, can be concurrently excited. Moreover, the optical
response of such nanoshells can be easily tuned by engineering
their geometry. Plasmons of the outer and inner surfaces of the
shell interact with each other and give rise to coupled resonant
modes, one below the lower (particle-like) and one above the
higher (cavity-like) plasmon modes [23, 24]. The interaction
and the resulting level shifts increase as the overlap between
the corresponding wave fields becomes larger, i.e. by reducing
the shell thickness, and is more pronounced for the dipole
modes because of their relatively larger spatial extent.

The photonic band structure of a simple cubic crystal,
with lattice constant a = 3c/ωp, of nanospheres consisting
of a silica core (R1 = 0.7c/ωp) and a metallic shell (D =
0.3c/ωp), in air, along the [001] direction, up to the frequency
region of the dipole particle-like plasmon modes, is depicted
in the left-hand diagram of figure 1. We note that the (001)
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surface of the given crystal is a plane of mirror symmetry
and, therefore, the frequency bands appear in pairs: kz(ω, k‖)
and −kz(ω, k‖); for this reason, we show in the figure the
bands only for positive kz . We have deliberately disregarded
absorption in the metallic material, taking τ−1 = 0 in
equation (1), in order to be able to interpret our results in an
unambiguous manner. At low frequencies we obtain a doubly
degenerate linear dispersion curve, as expected for propagation
in a homogeneous medium characterized by a frequency-
independent effective refractive index. This extended band
interacts with the narrow doubly degenerate band which
originates from the dipole particle-like plasmon modes of
the individual nanoshells, weakly interacting between them.
As a result, a frequency gap opens up about the crossing
point of these bands and is referred to as a hybridization
gap by analogy to the s–d hybridization gap in the electron
band structure of transition metals [22]. In addition, there
is a narrow non-degenerate band which is associated with
collective dipole plasma oscillations along the propagation
direction and, therefore, these modes cannot be excited by
an externally incident (transverse) wave. In the gap region
there are no propagating modes of the EM field and the real-
frequency dispersion lines continue analytically in the complex
kz plane [25, 26]. There is, in principle, an infinite number of
such complex bands but, over a gap region, it is the complex
band of the appropriate symmetry (doubly degenerate in our
case) with the smallest in magnitude imaginary part of kz

which determines the transmission of EM waves through a
finite slab of the crystal, along the given direction. In the
left-hand diagram of figure 1, in the gap, we show the real-
frequency lines for complex eigenvalues kz that correspond
to the doubly degenerate complex bands with the smallest in
magnitude imaginary part (plotted in the grey shaded areas).
It can be seen that there are three segments of such complex
bands in the gap region: one near the top of the gap, at the
Brillouin zone centre, with Re kz = 0; one near the bottom of
the gap, at the Brillouin zone edge, with Re kz = π/a; and one
about the middle of the gap, with 0 � Re kz � π/a.

The right-hand diagram of figure 1 displays the
transmittance, T , at normal incidence of a slab of the crystal
consisting of NL = 8 (001) planes of nanoshells. The
transmittance opposite the extended band exhibits the well-
known Fabry–Perot oscillations due to multiple scattering
between the surfaces of the slab. The period of these
oscillations corresponds to kza/π = 1/8, as expected for the
given thickness. In the gap region, the transmittance practically
vanishes.

4. Maxwell–Garnett homogenization

It is interesting to examine whether the complex band structure
shown in the left-hand diagram of figure 1 can correspond
to a homogeneous effective medium. According to extended
Maxwell–Garnett theories (see, e.g., [13] and references
therein), such a medium can be defined by μeff = 1 and

εeff = (q R)3 − 3i f TE1 (ω)

(q R)3 + 3
2 i f TE1 (ω)

, (3)

where f is the volume fraction occupied by the particles
and TE1 is the electric dipole element of the T matrix. It
is straightforward to show that, taking the long-wavelength
limit of TE1(ω) given in [21], equation (3) reduces to a
two-step Maxwell–Garnett approximation, where an effective
permittivity εs is first obtained by homogenization of the
individual coated particles:

εs − εm

εs + 2εm
=

(
R1

R

)3
εsilica − εm

εsilica + 2εm
(4)

and then εs is used to calculate εeff from

εeff − 1

εeff + 2
= f

εs − 1

εs + 2
. (5)

Using equations (4) and (5) we obtain an explicit expression for
εeff(ω), in terms of the dielectric functions of the constituent
materials and the relevant volume filling fractions, which
shows a resonant behaviour about the eigenfrequency of the
dipole particle-like plasmon modes. Since there are no
dissipative losses, εeff is real and exhibits an asymptotic
variation taking negative values within a frequency interval
next to the asymptote. In this region there can be no
propagating modes of the EM field. We have there a frequency
gap over which k = √

εeffμeffω/c is purely imaginary (Re k =
0). As can be seen in the corresponding band structure of
the actual crystal (left-hand diagram of figure 1), the dominant
evanescent modes near the top of the gap correspond, indeed,
to Re kz = 0. Consequently, the form of the associated
Bloch envelope wavefunctions (exp[− Im kz]) is compatible
with that of the evanescent modes supported in the Maxwell–
Garnett effective medium, in the frequency region of negative
εeff. In contrast, at lower frequencies within the gap, the
dominant evanescent modes, resulting from destructive wave
interference through multiple scattering in a periodic array of
scatterers, corresponds to Re kz �= 0 and such waves cannot
be supported in the Maxwell–Garnett effective medium. On
the other hand, as pointed out by Efros [11], to introduce
macroscopic εeff(ω) and μeff(ω), the wavelength inside the
material must be much longer than the size of the unit cell.
Therefore, this approximation for a photonic crystal becomes
less accurate as the Bloch wavevector k approaches the
Brillouin zone edges. This is shown in the left-hand diagram
of figure 1, where the dispersion curves of the actual crystal
are compared with those of the Maxwell–Garnett effective-
medium approximation.

5. S-matrix retrieval of effective parameters

The S-matrix retrieval method defines the effective parameters
based on the idea that a hypothetical homogeneous material
plate, of thickness H , mimics an inhomogeneous slab in the
sense that both systems produce the same outgoing field in the
far zone, most usually for normal incidence. This does not
mean that εeff and μeff describe the wave field inside the actual
structure where, at a given frequency, it has the form of a Bloch
wave rather than a simple plane wave. However, the effective
parameters must be such that these two waves obey the same
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dispersion relation and, therefore, have the same group (and
phase) velocity. This remark is, of course, meaningful only
if there is a single dominant relevant Bloch mode at the
given frequency. Moreover, in order for an effective-medium
description to be applicable, the wavelength in the embedding
medium must be much larger than the in-plane period of the
structure. This condition ensures that there is only a single
propagating mode of the scattered EM field, for g = 0 (see
equation (2)), corresponding to outgoing waves (refracted and
reflected beams). All other components of the wave field
(diffracted beams) are evanescent. However, though restriction
to the g = 0 block of the S matrix is sufficient to obtain the
scattered field by a finite slab of a given structure in the far
zone, the full S matrix must be considered, in general, in order
to describe interlayer coupling, which takes place through the
near field in a multi-layer slab. On the other hand, since a (001)

slab of the structure under consideration has a parallel plane
of mirror symmetry and is polarization-insensitive at normal
incidence, only two elements of the S matrix, S++

01;01 and S+−
01;01,

are relevant and correspond to the transmission and reflection
coefficients, t and r , respectively. In this case the S matrix has
the simple form

S =
(

t r
r t

)
(6)

and, since S is unitary because of flux conservation, its
eigenvalues, t + r and t − r , can be written as

t + r = exp(i2δ+) t − r = exp(i2δ−), (7)

where δ+, δ−, the so-called scattering phase shifts, are real
functions of frequency.

Inverting the standard Fresnel equations for an effective
homogeneous slab described by a refractive index neff and an
impedance zeff in air, we find that, for normal incidence, the
impedance and the refractive index of the slab can be retrieved
through [1]

zeff = ±
√

(r − 1)2 − t2

√
(r + 1)2 − t2

(8)

and

tan (β/2) = ±i

√
r 2 − (1 − t)2

r 2 − (1 + t)2
, (9)

respectively, where β = (ω/c)neff H . The sign of the
impedance in equation (8) is determined by the condition
Re zeff > 0, required for a passive material. Moreover, in
order to ensure an exponential decay of an outgoing wave,
the imaginary part of the refractive index has to be positive,
which fixes the sign in equation (9). With the help of
equation (7), equations (8) and (9) lead to the following
alternative expressions:

zeff = ±
√

tan δ+
tan δ−

(10)

and
tan(β/2) = ±i

√
tan δ+ tan δ−, (11)

respectively. The effective permittivity and permeability of the
slab are obtained from εeff = neff/zeff and μeff = neffzeff.

Figure 2. The real (upper diagram) and imaginary (lower diagram)
parts of the effective impedance of one (black solid lines), two (red
dashed lines) and eight (blue dotted lines) (001) layers of the
photonic crystal under consideration, after elimination of the
spurious sharp structures shown in the insets.

Since we view the simple cubic crystal under considera-
tion as a sequence of NL (001) planes, the boundary surfaces
of each layer are at a distance a/2 from its centre, on the left
and on the right of the plane of nanoshells, which corresponds
to an effective layer thickness equal to a. In this way, the loca-
tion of the two boundaries of an effective slab ensures a con-
stant impedance for various slab thicknesses, H = NLa, as
shown in figure 2. This is a necessary condition in order to
be able to assign intrinsic values for εeff and μeff [1, 2]. It
should be noted that the impedance, as calculated by equa-
tions (8) or (10), may exhibit spurious sharp structures about
the Fabry–Perot resonance frequencies, ωi , as shown in the in-
sets to figure 2. These artefacts, which are multiplied by in-
creasing the number of layers of the metamaterial slab, have
also been noticed by others [2] but no clear explanation of
their origin was given. We can understand the presence of
these structures at the specific spectral positions as follows. At
ωi , t = 1 and r = 0 or, equivalently, tan δ+(ωi ) = 0 and
tan δ−(ωi ) = 0. Therefore, in the vicinity of ωi we can write
tan δ+(ω) ∼= A1(ω − ωi ) + A2(ω − ωi )

2 and tan δ−(ω) ∼=
B1(ω − ωi ) + B2(ω − ωi )

2, where A1, A2, B1 and B2 are
appropriate expansion coefficients, and from equation (10) we
obtain

z2
eff

∼= A1

B1
+

(
A2

B1
− A1 B2

B2
1

)
(ω − ωi ) , (12)

i.e. zeff varies smoothly with frequency about ωi . However,
in actual calculations, because of numerical inaccuracies, the
roots of tan δ+(ω) and tan δ−(ω) may be slightly different,
e.g. tan δ+(ωi + �ωi ) = 0 and tan δ−(ωi ) = 0. As
a result, in this case an additional singular term of order
1/(ω−ωi ) appears in the expansion of z2

eff(ω), about ωi , which
leads to an impedance function with sharp spurious structures,
superimposed to a smooth background, as shown in the insets
to figure 2.
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Figure 3. The real (upper diagram) and imaginary (lower diagram)
parts of the effective refractive index of one (black solid lines), two
(red dashed lines) and eight (blue dotted lines) (001) layers of the
photonic crystal under consideration. The green dashed–dotted lines
show the refractive index deduced from the corresponding complex
band structure of the infinite crystal, shown in the left-hand diagram
of figure 1.

The effective refractive index often remains ambiguous
because of the multiple branches of the tangent function
appearing in equations (9) or (11). For a slab of small
thickness, e.g. one monolayer, it is usually the fundamental
branch which is relevant. However, for thicker slabs, higher
branches may lie arbitrarily close to one another, making the
selection of the correct branch difficult, as pointed out by
others as well [1, 2, 29], while possible discontinuities due
to resonances complicate the determination of an effective
refractive index. Here we use the refractive index deduced
from the complex band structure of the corresponding infinite
crystal, c[Re kz + i Im kz]/ω, as a guide for choosing the proper
branch, especially in the case of relatively thick slabs. In
figure 3 we show neff of one, two and eight layers of the
crystal under consideration, together with the refractive index
deduced from the complex band structure of figure 1. It can
be seen that very good convergence to the bulk results is
obtained already at relatively thin slabs. Interestingly, in the
gap region, Re neff varies stairwise and corresponding peaks
appear in Im neff, as many as the number of layers of the slab.
These structures are associated with in-gap resonances of the
slab [26]. In figure 4 we show the photonic band structure
of figure 1 in more detail in the region of the frequency gap
and the corresponding transmittance of one-, two-, and eight-
layer thick slabs, in logarithmic scale. The resonances in
the transmittance of a slab suggest that, at the corresponding
frequencies, there exist resonances of some kind in the slab and
we observe that such resonances appear within the frequency
gap of the infinite crystal. These slab resonances are clearly
due to resonances of the wave field localized on the individual
nanoshells interacting very weakly between them. Of course,
there cannot be states of the EM field in the infinite crystal
within the gap; but in a slab of finite thickness, evanescent
waves may exist and may lead to resonances of the EM field,
with a high amplitude at the surfaces of the slab (within the

Figure 4. A detailed view of figure 1 about the region of the
frequency gap. The (negative) natural logarithm of the transmittance
of one (black solid lines), two (red dashed lines) and eight (blue
dotted lines) layers is shown in the right-hand diagram.

Figure 5. The real (upper diagrams) and imaginary (lower diagrams)
parts of the permittivity (left-hand panel) and permeability
(right-hand panel) of one (black solid lines), two (red dashed lines)
and eight (blue dotted lines) layers of the photonic crystal under
consideration. The green dashed-dotted lines show the results of the
Maxwell–Garnett effective-medium approximation.

nanoshells of the surface planes) and a much smaller amplitude
in the middle of the slab (within the nanoshells of the middle
planes). It is worth noting the fact that these resonances of
the slab appear at frequencies along the real-frequency line
corresponding to Re kza/π = κ/(NL + 1), κ = 1, 2, . . . , NL,
where NL is the number of layers in the slab. Since the S-
matrix retrieval method defines the effective parameters so that
the transmission spectrum is exactly reproduced, such in-gap
resonances manifest themselves as discrete structures in the
refractive index. As more layers are added to build the infinite
crystal, these structures come closer to each other and become
less sharp, leading to the smooth refractive index deduced
from the corresponding complex band structure of the infinite
crystal.

In figure 5 we present the effective permittivity, εeff, and
permeability, μeff, obtained from zeff and neff, for slabs one,
two and eight layers thick. It can be seen that, although the
building units of the structure are non-absorptive with purely
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Figure 6. The real (upper diagrams) and imaginary (lower diagrams)
parts of the permittivity (left-hand panel) and permeability
(right-hand panel) of one (black solid lines), two (red dashed lines)
and eight (blue dotted lines) layers of the photonic crystal under
consideration, if absorptive losses in the metallic component are
taken into account, by setting τ−1 = 0.025ωp in equation (1). The
green dashed–dotted lines show the results of the Maxwell–Garnett
effective-medium approximation.

real permittivities and permeabilities, the S-matrix retrieval
method leads to non-zero imaginary parts for both εeff and
μeff in the frequency region of the resonance. However, the
retrieval procedure itself ensures that the values of εeff and μeff

are such that the absorption of each effective slab vanishes
at any frequency. In some sense, it is not possible that the
effective slab complies with the strong restriction to reproduce
exactly the reflection and transmission coefficients of the actual
metamaterial slab, with real functions εeff(ω) and μeff(ω) in
the resonance region. To make this possible, one has to assume
complex functions with positive Im εeff and negative Im μeff,
i.e. some fictitious losses which are counterbalanced by some
fictitious gain. Obviously, this occurs for given slab thickness,
specific characteristics of the incident field, etc, and, therefore,
εeff and μeff do not have the meaning of inherent material
parameters.

So far we neglected absorptive losses. Although one may
argue that a non-absorbing system is unphysical, such a system
is useful for elucidating the underlying physics. Moreover,
the effective parameters of a non-absorptive system provide
a valuable guide for determining the effective parameters of
a corresponding dissipative system. In figure 6 we present
εeff and μeff for the same slabs as in figure 5, if absorptive
losses in the metallic component are taken into account by
setting τ−1 = 0.025ωp in equation (1). It can be seen that
the effective parameters converge very fast with increasing slab
thickness, while resonance structures become smoother and
more extended in frequency, and sharp features are eliminated.
It is worth noting that, even in the presence of absorption,
the resonance in the effective permittivity is accompanied by
a weak antiresonance in the effective permeability. Although
such a behaviour has been observed and discussed by others as
well [9, 27–29], it is further elucidated by our previous analysis
for the ideal non-absorptive system (see figure 5).

6. Conclusion

In summary, we presented a theoretical study of the effective
EM parameters of a photonic crystal of metallic nanoshells
using the layer-multiple-scattering method. The results
deduced by the S-matrix retrieval procedure for finite slabs
of this crystal converge with increasing slab thickness and
are consistent with the complex band structure of the infinite
crystal. In this respect, our study establishes the complex
photonic band structure as a new tool for the determination
of the proper solution for the effective refractive index and
its unambiguous calculation for arbitrarily thick metamaterial
slabs [30, 31], even in regions of resonances. Moreover, we
clarified the origin of peculiar spectral features and artefacts
in the retrieved EM parameters, especially in regions of
resonances, and discussed the meaning and limits of validity
of these parameters, in conjunction with the Maxwell–Garnett
effective-medium approximation.
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